One place for hosting & domains

      Meshes

      Uma Introdução aos Service Meshes


      Introdução

      Um service mesh é uma camada de infraestrutura que permite gerenciar a comunicação entre os microsserviços da sua aplicação. À medida que mais desenvolvedores trabalham com microsserviços, os service meshes evoluíram para tornar esse trabalho mais fácil e mais eficaz consolidando tarefas administrativas e de gerenciamento comuns em uma configuração distribuída.

      Aplicar uma abordagem de microsserviço à arquitetura de aplicações envolve dividir sua aplicação em uma coleção de serviços fracamente acoplados. Essa abordagem oferece certos benefícios: as equipes podem iterar projetos e escalar rapidamente, usando uma variedade maior de ferramentas e linguagens. Por outro lado, os microsserviços representam novos desafios para a complexidade operacional, consistência de dados e segurança.

      Service meshes são projetados para resolver alguns desses desafios, oferecendo um nível granular de controle sobre como os serviços se comunicam uns com os outros. Especificamente, eles oferecem aos desenvolvedores uma maneira de gerenciar:

      • Descoberta de serviço
      • Roteamento e configuração de tráfego
      • Criptografia e autenticação/autorização
      • Métricas e monitoramento

      Embora seja possível executar essas tarefas de forma nativa com orquestradores de containers como o Kubernetes, essa abordagem envolve uma maior quantidade de tomadas de decisão e administração antecipadas quando comparada com o que as soluções de service mesh como o Istio e o Linkerd oferecem por fora. Nesse sentido, service meshes podem agilizar e simplificar o processo de trabalho com componentes comuns em uma arquitetura de microsserviço. Em alguns casos, eles podem até ampliar a funcionalidade desses componentes.

      Por que Service Meshes?

      Service meshes são projetados para resolver alguns dos desafios inerentes às arquiteturas de aplicações distribuídas.

      Essas arquiteturas cresceram a partir do modelo de aplicação de três camadas, que dividia as aplicações em uma camada web, uma camada de aplicação e uma camada de banco de dados. Ao escalar, esse modelo se mostrou desafiador para organizações que experimentam um rápido crescimento. Bases de código de aplicações monolíticas podem se tornar bagunçadas, conhecidas como “big balls of mud”, impondo desafios para o desenvolvimento e o deployment.

      Em resposta a esse problema, organizações como Google, Netflix e Twitter desenvolveram bibliotecas “fat client” internas para padronizar as operações de runtime entre os serviços. Essas bibliotecas forneceram balanceamento de carga, circuit breaker , roteamento e telemetria — precursores para recursos de service mesh. No entanto, eles também impuseram limitações às linguagens que os desenvolvedores poderiam usar e exigiram mudanças nos serviços quando eles próprios foram atualizados ou alterados.

      Um design de microsserviço evita alguns desses problemas. Em vez de ter uma base de código grande e centralizada de aplicações, você tem uma coleção de serviços gerenciados discretamente que representam um recurso da sua aplicação. Os benefícios de uma abordagem de microsserviço incluem:

      • Maior agilidade no desenvolvimento e no deployment, já que as equipes podem trabalhar e fazer deploy de diferentes recursos de aplicações de forma independente.
      • Melhores opções para CI/CD, já que microsserviços individuais podem ser testados e terem deploys refeitos independentemente.
      • Mais opções para linguagens e ferramentas. Os desenvolvedores podem usar as melhores ferramentas para as tarefas em questão, em vez de se restringirem a uma determinada linguagem ou conjunto de ferramentas.
      • Facilidade de escalar.
      • Melhorias no tempo de atividade, experiência do usuário e estabilidade.

      Ao mesmo tempo, os microsserviços também criaram desafios:

      • Sistemas distribuídos exigem diferentes maneiras de pensar sobre latência, roteamento, fluxos de trabalho assíncronos e falhas.
      • As configurações de microsserviço podem não atender necessariamente aos mesmos requisitos de consistência de dados que as configurações monolíticas.
      • Níveis maiores de distribuição exigem designs operacionais mais complexos, particularmente quando se trata de comunicação de serviço a serviço.
      • A distribuição de serviços aumenta a área de superfície para vulnerabilidades de segurança.

      Service meshes são projetados para resolver esses problemas, oferecendo controle coordenado e granular sobre como os serviços se comunicam. Nas seções a seguir, veremos como service meshes facilitam a comunicação de serviço a serviço por meio da descoberta de serviços, roteamento e balanceamento interno de carga, configuração de tráfego, criptografia, autenticação e autorização, métricas e monitoramento. Vamos utilizar a aplicação de exemplo Bookinfo do Istio — quatro microsserviços que juntos exibem informações sobre determinados livros — como um exemplo concreto para ilustrar como os service meshes funcionam.

      Descoberta de Serviço

      Em um framework distribuído, é necessário saber como se conectar aos serviços e saber se eles estão ou não disponíveis. Os locais das instâncias de serviço são atribuídos dinamicamente na rede e as informações sobre eles estão em constante mudança, à medida que os containers são criados e destruídos por meio do escalonamento automático, upgrades e falhas.

      Historicamente, existiram algumas ferramentas para fazer a descoberta de serviços em uma estrutura de microsserviço. Repositórios de chave-valor como o etcd foram emparelhados com outras ferramentas como o Registrator para oferecer soluções de descoberta de serviços. Ferramentas como o Consul iteraram isso combinando um armazenamento de chave-valor com uma interface de DNS que permite aos usuários trabalhar diretamente com seu servidor ou nó DNS.

      Tomando uma abordagem semelhante, o Kubernetes oferece descoberta de serviço baseada em DNS por padrão. Com ele, você pode procurar serviços e portas de serviço e fazer pesquisas inversas de IP usando convenções comuns de nomenclatura de DNS. Em geral, um registro A para um serviço do Kubernetes corresponde a esse padrão: serviço.namespace.svc.cluster.local. Vamos ver como isso funciona no contexto do aplicativo Bookinfo. Se, por exemplo, você quisesse informações sobre o serviço details do aplicativo Bookinfo, poderia ver a entrada relevante no painel do Kubernetes:

      Details Service in Kubernetes Dash

      Isto lhe dará informações relevantes sobre o nome do serviço, namespace e ClusterIP, que você pode usar para se conectar ao seu serviço, mesmo que os containers individuais sejam destruídos e recriados.

      Um service mesh como o Istio também oferece recursos de descoberta de serviço. Para fazer a descoberta de serviços, o Istio confia na comunicação entre a API do Kubernetes, o próprio plano de controle do Istio, gerenciado pelo componente de gerenciamento de tráfego Pilot, e seu plano de dados, gerenciado pelos proxies sidecar Envoy. O Pilot interpreta os dados do servidor da API do Kubernetes para registrar as alterações nos locais do Pod. Em seguida, ele converte esses dados em uma representação canônica Istio e os encaminha para os proxies sidecar.

      Isso significa que a descoberta de serviço no Istio é independente de plataforma, o que podemos ver usando o add-on Grafana do Istio para olhar o serviço details novamente no painel de serviço do Istio:

      Details Service Istio Dash

      Nossa aplicação está sendo executada em um cluster Kubernetes, então, mais uma vez, podemos ver as informações relevantes do DNS sobre o Serviço details, juntamente com outros dados de desempenho.

      Em uma arquitetura distribuída, é importante ter informações atualizadas, precisas e fáceis de localizar sobre serviços. Tanto o Kubernetes quanto os service meshes, como o Istio, oferecem maneiras de obter essas informações usando convenções do DNS.

      Configuração de Roteamento e Tráfego

      Gerenciar o tráfego em uma estrutura distribuída significa controlar como o tráfego chega ao seu cluster e como ele é direcionado aos seus serviços. Quanto mais controle e especificidade você tiver na configuração do tráfego externo e interno, mais você poderá fazer com sua configuração. Por exemplo, nos casos em que você está trabalhando com deployments piloto (canary), migrando aplicativos para novas versões ou testando serviços específicos por meio de injeção de falhas, ter a capacidade de decidir quanto tráfego seus serviços estão obtendo e de onde ele vem será a chave para o sucesso de seus objetivos.

      O Kubernetes oferece diferentes ferramentas, objetos e serviços que permitem aos desenvolvedores controlar o tráfego externo para um cluster: kubectl proxy, NodePort, Load Balancers, e Ingress Controllers and Resources. O kubectl proxy e o NodePort permitem expor rapidamente seus serviços ao tráfego externo: O kubectl proxy cria um servidor proxy que permite acesso ao conteúdo estático com um caminho HTTP, enquanto o NodePort expõe uma porta designada aleatoriamente em cada node. Embora isso ofereça acesso rápido, as desvantagens incluem ter que executar o kubectl como um usuário autenticado, no caso do kubectl proxy, e a falta de flexibilidade nas portas e nos IPs do node, no caso do NodePort. E, embora um Balanceador de Carga otimize a flexibilidade ao se conectar a um serviço específico, cada serviço exige seu próprio Balanceador de Carga, o que pode custar caro.

      Um Ingress Resource e um Ingress Controller juntos oferecem um maior grau de flexibilidade e configuração em relação a essas outras opções. O uso de um Ingress Controller com um Ingress Resource permite rotear o tráfego externo para os serviços e configurar o roteamento interno e o balanceamento de carga. Para usar um Ingress Resource, você precisa configurar seus serviços, o Ingress Controller e o LoadBalancer e o próprio Ingress Resource, que especificará as rotas desejadas para os seus serviços. Atualmente, o Kubernetes suporta seu próprio Controlador Nginx, mas há outras opções que você pode escolher também, gerenciadas pelo Nginx, Kong, e outros.

      O Istio itera no padrão Controlador/Recurso do Kubernetes com Gateways do Istio e VirtualServices. Como um Ingress Controller, um gateway define como o tráfego de entrada deve ser tratado, especificando as portas e os protocolos expostos a serem usados. Ele funciona em conjunto com um VirtualService, que define rotas para serviços dentro da malha ou mesh. Ambos os recursos comunicam informações ao Pilot, que encaminha essas informações para os proxies Envoy. Embora sejam semelhantes ao Ingress Controllers and Resources, os Gateways e os VirtualServices oferecem um nível diferente de controle sobre o tráfego: em vez de combinar camadas e protocolos Open Systems Interconnection (OSI), Gateways e VirtualServices permitem diferenciar entre as camadas OSI nas suas configurações. Por exemplo, usando VirtualServices, as equipes que trabalham com especificações de camada de aplicação podem ter interesses diferenciados das equipes de operações de segurança que trabalham com diferentes especificações de camada. Os VirtualServices possibilitam separar o trabalho em recursos de aplicações distintos ou em diferentes domínios de confiança e podem ser usados para testes como canary, rollouts graduais, testes A/B, etc.

      Para visualizar a relação entre os serviços, você pode usar o add-on Servicegraph do Istio, que produz uma representação dinâmica da relação entre os serviços usando dados de tráfego em tempo real. A aplicação Bookinfo pode se parecer com isso sem qualquer roteamento personalizado aplicado:

      Bookinfo service graph

      Da mesma forma, você pode usar uma ferramenta de visualização como o Weave Scope para ver a relação entre seus serviços em um determinado momento. A aplicação Bookinfo sem roteamento avançado pode ter esta aparência:

      Weave Scope Service Map

      Ao configurar o tráfego de aplicações em uma estrutura distribuída, há várias soluções diferentes — de opções nativas do Kubernetes até service meshes como o Istio — que oferecem várias opções para determinar como o tráfego externo chegará até seus recursos de aplicação e como esses recursos se comunicarão entre si.

      Criptografia e Autenticação/Autorização

      Um framework distribuído apresenta oportunidades para vulnerabilidades de segurança. Em vez de se comunicarem por meio de chamadas internas locais, como aconteceria em uma configuração monolítica, os serviços em uma arquitetura de microsserviço transmitem informações, incluindo informações privilegiadas, pela rede. No geral, isso cria uma área de superfície maior para ataques.

      Proteger os clusters do Kubernetes envolve uma variedade de procedimentos; Vamos nos concentrar em autenticação, autorização e criptografia. O Kubernetes oferece abordagens nativas para cada um deles:

      • Autenticação: As solicitações de API no Kubernetes estão vinculadas a contas de usuário ou serviço, que precisam ser autenticadas. Existem várias maneiras diferentes de gerenciar as credenciais necessárias: Tokens estáticos, tokens de bootstrap, certificados de cliente X509 e ferramentas externas, como o OpenID Connect.
      • Autorização: O Kubernetes possui diferentes módulos de autorização que permitem determinar o acesso com base em funções como papéis, atributos e outras funções especializadas. Como todas as solicitações ao servidor da API são negadas por padrão, cada parte de uma solicitação da API deve ser definida por uma política de autorização.
      • Criptografia: Pode referir-se a qualquer um dos seguintes: conexões entre usuários finais e serviços, dados secretos, terminais no plano de controle do Kubernetes e comunicação entre componentes worker do cluster e componentes master. O Kubernetes tem diferentes soluções para cada um deles:

      A configuração de políticas e protocolos de segurança individuais no Kubernetes requer investimento administrativo. Um service mesh como o Istio pode consolidar algumas dessas atividades.

      O Istio foi projetado para automatizar parte do trabalho de proteção dos serviços. Seu plano de controle inclui vários componentes que lidam com segurança:

      • Citadel: gerencia chaves e certificados.
      • Pilot: supervisiona as políticas de autenticação e nomenclatura e compartilha essas informações com os proxies Envoy.
      • Mixer: gerencia autorização e auditoria.

      Por exemplo, quando você cria um serviço, o Citadel recebe essa informação do kube-apiserver e cria certificados e chaves SPIFFE para este serviço. Em seguida, ele transfere essas informações para Pods e sidecars Envoy para facilitar a comunicação entre os serviços.

      Você também pode implementar alguns recursos de segurança habilitando o TLS mútuo durante a instalação do Istio. Isso inclui identidades de serviço fortes para comunicação interna nos clusters e entre clusters, comunicação segura de serviço para serviço e de usuários para serviço, e um sistema de gerenciamento de chaves capaz de automatizar a criação, a distribuição e a rotação de chaves e certificados.

      Ao iterar em como o Kubernetes lida com autenticação, autorização e criptografia, service meshes como o Istio são capazes de consolidar e estender algumas das melhores práticas recomendadas para a execução de um cluster seguro do Kubernetes.

      Métricas e Monitoramento

      Ambientes distribuídos alteraram os requisitos para métricas e monitoramento. As ferramentas de monitoramento precisam ser adaptativas, respondendo por mudanças frequentes em serviços e endereços de rede, e abrangentes, permitindo a quantidade e o tipo de informações que passam entre os serviços.

      O Kubernetes inclui algumas ferramentas internas de monitoramento por padrão. Esses recursos pertencem ao seu pipeline de métricas de recursos, que garante que o cluster seja executado conforme o esperado. O componente cAdvisor coleta estatísticas de uso de rede, memória e CPU de containers e nodes individuais e passa essas informações para o kubelet; o kubelet, por sua vez, expõe essas informações por meio de uma API REST. O servidor de métricas obtém essas informações da API e as repassa para o kube-aggregator para formatação.

      Você pode estender essas ferramentas internas e monitorar os recursos com uma solução completa de métricas. Usando um serviço como o Prometheus como um agregador de métricas, você pode criar uma solução diretamente em cima do pipeline de métricas de recursos do Kubernetes. O Prometheus integra-se diretamente ao cAdvisor através de seus próprios agentes, localizados nos nodes. Seu principal serviço de agregação coleta e armazena dados dos nodes e os expõe através de painéis e APIs. Opções adicionais de armazenamento e visualização também estão disponíveis se você optar por integrar seu principal serviço de agregação com ferramentas de backend de armazenamento, registro e visualização, como InfluxDB, Grafana, ElasticSearch, Logstash, Kibana, e outros.

      Em um service mesh como o Istio, a estrutura do pipeline completo de métricas faz parte do design da malha. Os sidecars do Envoy operando no nível do Pod comunicam as métricas ao Mixer, que gerencia políticas e telemetria. Além disso, os serviços Prometheus e Grafana estão habilitados por padrão (embora se você estiver instalando o Istio com o Helm você precisará especificar granafa.enabled=true durante a instalação). Como no caso do pipeline completo de métricas, você também pode configurar outros serviços e deployments para opções de registro e visualização.

      Com essas ferramentas de métrica e visualização, você pode acessar informações atuais sobre serviços e cargas de trabalho em um local central. Por exemplo, uma visão global do aplicativo BookInfo pode ter esta aparência no painel Grafana do Istio:

      Bookinfo services from Grafana dash

      Ao replicar a estrutura de um pipeline completo de métricas do Kubernetes e simplificar o acesso a alguns de seus componentes comuns, service meshes como o Istio agilizam o processo de coleta e visualização de dados ao trabalhar com um cluster.

      Conclusão

      As arquiteturas de microsserviço são projetadas para tornar o desenvolvimento e o deployment de aplicações mais rápidos e confiáveis. No entanto, um aumento na comunicação entre serviços mudou as práticas recomendadas para determinadas tarefas administrativas. Este artigo discute algumas dessas tarefas, como elas são tratadas em um contexto nativo do Kubernetes e como elas podem ser gerenciadas usando service mesh – nesse caso, o Istio.

      Para obter mais informações sobre alguns dos tópicos do Kubernetes abordados aqui, consulte os seguintes recursos:

      Além disso, os hubs de documentação do Kubernetes e do Istio são ótimos lugares para encontrar informações detalhadas sobre os tópicos discutidos aqui.



      Source link

      An Introduction to Service Meshes


      Introduction

      A service mesh is an infrastructure layer that allows you to manage communication between your application’s microservices. As more developers work with microservices, service meshes have evolved to make that work easier and more effective by consolidating common management and administrative tasks in a distributed setup.

      Taking a microservice approach to application architecture involves breaking your application into a collection of loosely-coupled services. This approach offers certain benefits: teams can iterate designs and scale quickly, using a wider range of tools and languages. On the other hand, microservices pose new challenges for operational complexity, data consistency, and security.

      Service meshes are designed to address some of these challenges by offering a granular level of control over how services communicate with one another. Specifically, they offer developers a way to manage:

      • Service discovery
      • Routing and traffic configuration
      • Encryption and authentication/authorization
      • Metrics and monitoring

      Though it is possible to do these tasks natively with container orchestrators like Kubernetes, this approach involves a greater amount of up-front decision-making and administration when compared to what service mesh solutions like Istio and Linkerd offer out of the box. In this sense, service meshes can streamline and simplify the process of working with common components in a microservice architecture. In some cases they can even extend the functionality of these components.

      Why Services Meshes?

      Service meshes are designed to address some of the challenges inherent to distributed application architectures.

      These architectures grew out of the three-tier application model, which broke applications into a web tier, application tier, and database tier. At scale, this model has proved challenging to organizations experiencing rapid growth. Monolithic application code bases can grow to be unwieldy “big balls of mud”, posing challenges for development and deployment.

      In response to this problem, organizations like Google, Netflix, and Twitter developed internal “fat client” libraries to standardize runtime operations across services. These libraries provided load balancing, circuit breaking, routing, and telemetry — precursors to service mesh capabilities. However, they also imposed limitations on the languages developers could use and required changes across services when they themselves were updated or changed.

      A microservice design avoids some of these issues. Instead of having a large, centralized application codebase, you have a collection of discretely managed services that represent a feature of your application. Benefits of a microservice approach include:

      • Greater agility in development and deployment, since teams can work on and deploy different application features independently.
      • Better options for CI/CD, since individual microservices can be tested and redeployed independently.
      • More options for languages and tools. Developers can use the best tools for the tasks at hand, rather than being restricted to a given language or toolset.
      • Ease in scaling.
      • Improvements in uptime, user experience, and stability.

      At the same time, microservices have also created challenges:

      • Distributed systems require different ways of thinking about latency, routing, asynchronous workflows, and failures.
      • Microservice setups cannot necessarily meet the same requirements for data consistency as monolithic setups.
      • Greater levels of distribution necessitate more complex operational designs, particularly when it comes to service-to-service communication.
      • Distribution of services increases the surface area for security vulnerabilities.

      Service meshes are designed to address these issues by offering coordinated and granular control over how services communicate. In the sections that follow, we’ll look at how service meshes facilitate service-to-service communication through service discovery, routing and internal load balancing, traffic configuration, encryption, authentication and authorization, and metrics and monitoring. We will use Istio’s Bookinfo sample application — four microservices that together display information about particular books — as a concrete example to illustrate how service meshes work.

      Service Discovery

      In a distributed framework, it’s necessary to know how to connect to services and whether or not they are available. Service instance locations are assigned dynamically on the network and information about them is constantly changing as containers are created and destroyed through autoscaling, upgrades, and failures.

      Historically, there have been a few tools for doing service discovery in a microservice framework. Key-value stores like etcd were paired with other tools like Registrator to offer service discovery solutions. Tools like Consul iterated on this by combining a key-value store with a DNS interface that allows users to work directly with their DNS server or node.

      Taking a similar approach, Kubernetes offers DNS-based service discovery by default. With it, you can look up services and service ports, and do reverse IP lookups using common DNS naming conventions. In general, an A record for a Kubernetes service matches this pattern: service.namespace.svc.cluster.local. Let’s look at how this works in the context of the Bookinfo application. If, for example, you wanted information on the details service from the Bookinfo app, you could look at the relevant entry in the Kubernetes dashboard:

      Details Service in Kubernetes Dash

      This will give you relevant information about the Service name, namespace, and ClusterIP, which you can use to connect with your Service even as individual containers are destroyed and recreated.

      A service mesh like Istio also offers service discovery capabilities. To do service discovery, Istio relies on communication between the Kubernetes API, Istio’s own control plane, managed by the traffic management component Pilot, and its data plane, managed by Envoy sidecar proxies. Pilot interprets data from the Kubernetes API server to register changes in Pod locations. It then translates that data into a canonical Istio representation and forwards it onto the sidecar proxies.

      This means that service discovery in Istio is platform agnostic, which we can see by using Istio’s Grafana add-on to look at the details service again in Istio’s service dashboard:

      Details Service Istio Dash

      Our application is running on a Kubernetes cluster, so once again we can see the relevant DNS information about the details Service, along with other performance data.

      In a distributed architecture, it’s important to have up-to-date, accurate, and easy-to-locate information about services. Both Kubernetes and service meshes like Istio offer ways to obtain this information using DNS conventions.

      Routing and Traffic Configuration

      Managing traffic in a distributed framework means controlling how traffic gets to your cluster and how it’s directed to your services. The more control and specificity you have in configuring external and internal traffic, the more you will be able to do with your setup. For example, in cases where you are working with canary deployments, migrating applications to new versions, or stress testing particular services through fault injection, having the ability to decide how much traffic your services are getting and where it is coming from will be key to the success of your objectives.

      Kubernetes offers different tools, objects, and services that allow developers to control external traffic to a cluster: kubectl proxy, NodePort, Load Balancers, and Ingress Controllers and Resources. Both kubectl proxy and NodePort allow you to quickly expose your services to external traffic: kubectl proxy creates a proxy server that allows access to static content with an HTTP path, while NodePort exposes a randomly assigned port on each node. Though this offers quick access, drawbacks include having to run kubectl as an authenticated user, in the case of kubectl proxy, and a lack of flexibility in ports and node IPs, in the case of NodePort. And though a Load Balancer optimizes for flexibility by attaching to a particular Service, each Service requires its own Load Balancer, which can be costly.

      An Ingress Resource and Ingress Controller together offer a greater degree of flexibility and configurability over these other options. Using an Ingress Controller with an Ingress Resource allows you to route external traffic to Services and configure internal routing and load balancing. To use an Ingress Resource, you need to configure your Services, the Ingress Controller and LoadBalancer, and the Ingress Resource itself, which will specify the desired routes to your Services. Currently, Kubernetes supports its own Nginx Controller, but there are other options you can choose from as well, managed by Nginx, Kong, and others.

      Istio iterates on the Kubernetes Controller/Resource pattern with Istio Gateways and VirtualServices. Like an Ingress Controller, a Gateway defines how incoming traffic should be handled, specifying exposed ports and protocols to use. It works in conjunction with a VirtualService, which defines routes to Services within the mesh. Both of these resources communicate information to Pilot, which then forwards that information to the Envoy proxies. Though they are similar to Ingress Controllers and Resources, Gateways and VirtualServices offer a different level of control over traffic: instead of combining Open Systems Interconnection (OSI) layers and protocols, Gateways and VirtualServices allow you to differentiate between OSI layers in your settings. For example, by using VirtualServices, teams working with application layer specifications could have a separation of concerns from security operations teams working with different layer specifications. VirtualServices make it possible to separate work on discrete application features or within different trust domains, and can be used for things like canary testing, gradual rollouts, A/B testing, etc.

      To visualize the relationship between Services, you can use Istio’s Servicegraph add-on, which produces a dynamic representation of the relationship between Services using real-time traffic data. The Bookinfo application might look like this without any custom routing applied:

      Bookinfo service graph

      Similarly, you can use a visualization tool like Weave Scope to see the relationship between your Services at a given time. The Bookinfo application without advanced routing might look like this:

      Weave Scope Service Map

      When configuring application traffic in a distributed framework, there are a number of different solutions — from Kubernetes-native options to service meshes like Istio — that offer various options for determining how external traffic will reach your application resources and how these resources will communicate with one another.

      Encryption and Authentication/Authorization

      A distributed framework presents opportunities for security vulnerabilities. Instead of communicating through local internal calls, as they would in a monolithic setup, services in a microservice architecture communicate information, including privileged information, over the network. Overall, this creates a greater surface area for attacks.

      Securing Kubernetes clusters involves a range of procedures; we will focus on authentication, authorization, and encryption. Kubernetes offers native approaches to each of these:

      • Authentication: API requests in Kubernetes are tied to user or service accounts, which need to be authenticated. There are several different ways to manage the necessary credentials: Static Tokens, Bootstrap Tokens, X509 client certificates, and external tools like OpenID Connect.
      • Authorization: Kubernetes has different authorization modules that allow you to determine access based on things like roles, attributes, and other specialized functions. Since all requests to the API server are denied by default, each part of an API request must be defined by an authorization policy.
      • Encryption: This can refer to any of the following: connections between end users and services, secret data, endpoints in the Kubernetes control plane, and communication between worker cluster components and master components. Kubernetes has different solutions for each of these:

      Configuring individual security policies and protocols in Kubernetes requires administrative investment. A service mesh like Istio can consolidate some of these activities.

      Istio is designed to automate some of the work of securing services. Its control plane includes several components that handle security:

      • Citadel: manages keys and certificates.
      • Pilot: oversees authentication and naming policies and shares this information with Envoy proxies.
      • Mixer: manages authorization and auditing.

      For example, when you create a Service, Citadel receives that information from the kube-apiserver and creates SPIFFE certificates and keys for this Service. It then transfers this information to Pods and Envoy sidecars to facilitate communication between Services.

      You can also implement some security features by enabling mutual TLS during the Istio installation. These include strong service identities for cross- and inter-cluster communication, secure service-to-service and user-to-service communication, and a key management system that can automate key and certificate creation, distribution, and rotation.

      By iterating on how Kubernetes handles authentication, authorization, and encryption, service meshes like Istio are able to consolidate and extend some of the recommended best practices for running a secure Kubernetes cluster.

      Metrics and Monitoring

      Distributed environments have changed the requirements for metrics and monitoring. Monitoring tools need to be adaptive, accounting for frequent changes to services and network addresses, and comprehensive, allowing for the amount and type of information passing between services.

      Kubernetes includes some internal monitoring tools by default. These resources belong to its resource metrics pipeline, which ensures that the cluster runs as expected. The cAdvisor component collects network usage, memory, and CPU statistics from individual containers and nodes and passes that information to kubelet; kubelet in turn exposes that information via a REST API. The Metrics Server gets this information from the API and then passes it to the kube-aggregator for formatting.

      You can extended these internal tools and monitoring capabilities with a full metrics solution. Using a service like Prometheus as a metrics aggregator allows you to build directly on top of the Kubernetes resource metrics pipeline. Prometheus integrates directly with cAdvisor through its own agents, located on the nodes. Its main aggregation service collects and stores data from the nodes and exposes it though dashboards and APIs. Additional storage and visualization options are also available if you choose to integrate your main aggregation service with backend storage, logging, and visualization tools like InfluxDB, Grafana, ElasticSearch, Logstash, Kibana, and others.

      In a service mesh like Istio, the structure of the full metrics pipeline is part of the mesh’s design. Envoy sidecars operating at the Pod level communicate metrics to Mixer, which manages policies and telemetry. Additionally, Prometheus and Grafana services are enabled by default (though if you are installing Istio with Helm you will need to specify granafa.enabled=true during installation). As is the case with the full metrics pipeline, you can also configure other services and deployments for logging and viewing options.

      With these metric and visualization tools in place, you can access current information about services and workloads in a central place. For example, a global view of the BookInfo application might look like this in the Istio Grafana dashboard:

      Bookinfo services from Grafana dash

      By replicating the structure of a Kubernetes full metrics pipeline and simplifying access to some of its common components, service meshes like Istio streamline the process of data collection and visualization when working with a cluster.

      Conclusion

      Microservice architectures are designed to make application development and deployment fast and reliable. Yet an increase in inter-service communication has changed best practices for certain administrative tasks. This article discusses some of those tasks, how they are handled in a Kubernetes-native context, and how they can be managed using a service mesh — in this case, Istio.

      For more information on some of the Kubernetes topics covered here, please see the following resources:

      Additionally, the Kubernetes and Istio documentation hubs are great places to find detailed information about the topics discussed here.



      Source link